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A three-dimensional lattice-Boltzmann model which yields correct hydro- 
dynamics at the Navier-Stokes level of the Chapman-Enskog expansion 
requires a minimum of 26 velocities. We present results for a model with one 
additional velocity, determined by maximizing the equilibrium entropy. For 
compressible Rayleigh-B6nard convection the model is more accurate but 
considerably less stable, than a previous, approximate 21-speed model. 
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1. I N T R O D U C T I O N  

The lattice gas automaton (LGA) method ~1"2~ models fluid-dynamic 
behavior by creating a fictitious molecular dynamical world of particles 
moving on a regular lattice. These particles travel between neighboring 
lattice sites, arriving synchronously at the lattice sites at integral multiples 
of the simulation time step, where they engage in collisions that conserve 
particle number, momentum, and (for thermal models) energy. The LGA 
models are Boolean systems that allow only zero or one particle at each 
site for each of the permitted particle velocities. Macroscopic quantities, 
such as mass density and fluid velocity, are obtained by spatial or temporal 
averaging to eliminate the large amount of statistical noise in the LGA 
calculations. 
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The lattice Boltzmann equation (LBE) 13 51 model eliminates this 
statistical noise by directly simulating the ensemble-averaged behavior of 
an LGA system. The LGA's Boolean variables are replaced by floating 
point variables f~(r) representing the expected number of particles traveling 
in the ~th direction at position r of the lattice. The linearized LBE collision 
operator redistributes the incoming particle mass amongst the outgoing 
particle velocities in such a way as to relax toward a local equilibrium 
distribution determined from the local conserved densities. 

Initially, LBE models included only mass and momentum as conserved 
quantities. They involved transcriptions of particle collision rules for the 
effect of the collision operator on the velocity distribution. These models, 
for example for the Kelvin-Helmholtz instability, were encouragingly 
found to be somewhat more stable than the standard numerical schemes 
for solving the Navier-Stokes equations. To include thermal effects as well 
but approximately, the similarity between the Navier-Stokes velocity and 
temperature equations can be exploited to formulate LBE models that treat 
temperature as an additional velocity component. Such an example is the 
simulation of Rayleigh-B6nard convection using a single-speed LBE model 
of the Boussinesq equationsJ 61 To evaluate thermal effects more accurately 
multispeed LBE models must be employed to include energy conservation 
explicitly. In order to simplify the calculation the number of velocities 
considered was reduced in earlier work, but they then did not exactly 
model the full Navier-Stokes equations. 17"8~ This article addresses the 
problem of how to build an exact model (neglecting Burnett-level correc- 
tions) and the model's resulting numerical stability. 

2. THERMAL LBE MODEL 

Construction of an LBE model requires specification of the structure 
of the lattice and the set of permitted particle velocities {e~}, the collision 
operator I2~/~, and the local equilibrium mass distributionf~ ~. The following 
conventions are used in describing an LBE model. The time required for 
particles to travel from source to destination sites between successive colli- 
sions r is taken as the unit of time. For  models using the Lax-Wendroff  
streaming operator (see below), this time will differ from the simulation 
time step ~t. The nearest neighbor spacing of the lattice becomes the unit 
of length, and the model's particles are taken to have unit mass, m = 1. We 
take the Boltzmann factor k to be unity, which establishes a temperature 
scale through the relation s = (3/2)k/mT, where e is the internal energy per 
unit mass. Greek indices are used to iterate over the directions of particle 
motion, Latin subscripts to denote the Cartesian components of vectors 
and tensors. 
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The most general restriction on the form of f ~  ~ required to obtain 
Navier-Stokes behavior demands that its lowest 26 velocity moments 
match those of the Maxwell-Boltzmann distribution, c9~ It so happens that 
the velocity set consisting of speed x/~, x//3, and speed 2 particles on a 
cubic lattice contains 26 elements, and the symmetries of this set match 
those of the 26 Maxwell-Boltzmann moments. Moreover, all of these 
moments may be independently specified and thus this velocity set con- 
stitutes a minimal LBE model yielding correct Navier-Stokes hydrodynamic 
behavior with the equilibrium mass distribution f ~ "  uniquely determined. 
Unfortunately, this model is found to be numerically unstable unless its 
transport coefficients are made quite large. 

To improve stability, the velocity set can be decreased or increased. 
If the velocity set is decreased then the model will necessarily violate some of 
the velocity-moment constraints, and thus will deviate from Navier-Stokes 
behavior. With care, these deviations can be made to be of sufficiently high 
order in the fluid velocity u that the resulting model may still be useful for 
simulating low-Mach-number flows. Such a thermal LBE model, with com- 
paratively modest numerical stability, using a three-dimensional cubic 
lattice with 21 particle velocities has been described previously, c ~o) 

In this paper the velocity set is increased from the 26-velocity minimal 
set by one additional speed, specifically, a zero-velocity (i.e., stopped) 
particle population in the hope of increasing the numerical stability of 
the scheme while retaining the correct Navier-Stokes solution. The extra 
degree of freedom provided by the stopped particle population is used to 
maximize the entropy at zero fluid velocity. The equilibrium entropy S in 
the 27-velocity model is then 

In r 8f (~ In fco~ ~;r In j.(o) S = -f~o ~ In fCo~ 12f~2 s , / 5 -  ~ , /g3  , / 3 - w 2  _ (1) 

where the subscripts identify the particle speeds. At zero fluid velocity the 
26 moment constraints reduce to 

f~oO~+ 1-)rco~ co) ~r(o) �9 , -s , /5+ 8 f , / 3 +  w _, = P  

(0) (0) (01 2 4 f / ~  2 + 24f,/3 + 24f2 = 2pc (2) 

(0) (o) (0) 48f/5_, + 7 2 f f 5  + 96f_, = (20/3) p e  2 

where e is the internal energy per unit mass and p is the mass density. 
Maximizing S under these constraints yields 

ft0~ ~ 0.693e -~ - 1.248e + 0.903 (3) 



1114 McNamara et  al. 

which uniquely determines the equilibrium distribution at zero fluid velocity. 
This value off(o ~ is also used at nonzero fluid velocity as an approximate 
solution to the more general problem of maximizing entropy in a moving 
fluid. 

The collision operator is best described in terms of velocity moments 
of the mass distribution. The postcollisional mass distributionf'~ is generated 
from the precollisional distributionf~ through the collision operator 

f ' ( r ,  t) = f~(r, t) + ~ g2~/jf~n~q'(r, t) (4) 

where f~neq)= f:~ __flol. The collision operator is fully defined by specifying 
its effect on a complete set of velocity moments; the present model has 27 
particle velocities and thus 27 independent moments are required for a 
complete specification. The five lowest velocity moments are just the 
conserved densities. The conserved densities are contained entirely in the 
equilibrium distribution, and thus the action of the collision operator on 
these moments is irrelevant. Higher moments are associated with viscous 
and thermal transport properties; in particular, the action of the collision 
operator on the nonequilibrium part of the trace-free second moments 
determines the viscosity of the model. Similarly, relaxation of the traceful 
nonequilibrium third moments controls the thermal conductivity. These 
viscous and thermal transport moments are taken to be eigenvectors of the 
collision operator, i.e., 

~,(c~,c~,--c~6,,h/3)f'~"eq'=(;t~+ 1)~(c~,c~,,--c~6,,h/3)f(~ "r (5) 
~t ct  

~.(e~-u)2(c~, ,-u, ,) f '~ '~eq'=(, t , ,+l)~(e~-u)2(c~,--u, ,) f~ '~q' (6) 
: t  ~t 

where 2.,. and it,. are eigenvalues of I2. The kinematic viscosity v and the 
thermal diffusivity X are determined by 

v= -~cSte +~ , X = - ~ t e  +-~ (7) 

The bulk viscosity is zero, as must be the case for any ideal energy-conserving 
gas (since Z~c~ft~ "eql must be zero). 

The provision of separate eigenvalues for the relaxation of the viscous 
and thermal transport moments allows this model to simulate fluids with 
arbitrary Prandtl number P r =  v/z. The thermal lattice BGK (LBGK) tlt~ 
or single-relaxation-time (SRT) t~-~ models, in which the nonequilibrium 
distribution is relaxed uniformly to equilibrium using a single eigenvalue, 
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are restricted to Pr = 1. Previous thermal lattice Boltzmann models with 
two relaxation times contained an error in the energy equation when the 
Prandtl number was not equal to one, namely the term representing dis- 
sipation and transport of energy by the viscous forces was multiplied by the 
thermal conductivity rather than by the viscosity. This defect is removed 
in the present model by relaxing the third moments in the frame of the 
moving fluid, rather than in the frame of the lattice. Cross terms in the 
third powers of ( % - u )  appearing in Eq. (6) couple second moments of 
the nonequilibrium distribution, x- ~ ~ r~,eq, into the energy equation. 
This coupling corrects the transport coefficient multiplying the viscous term. 

Higher even moments of the nonequilibrium distribution are relaxed 
using the viscous eigenvalue 2, and higher odd moments are relaxed using J.,,. 
This scheme was found to produce somewhat better stability than relaxing 
higher moments straight to equilibrium. 

The collision operator is not directly implemented as a matrix product 
as suggested by Eq. (4); rather, the various velocity moments discussed 
above are first projected out o f f ~  n~q'. In this velocity-moment basis the 
collision operator becomes diagonal and its action on ft~eq' may then be 
easily computed. The ouput of the collision operator is then transformed 
back to the particle-population basis of Eq. (4), and then added to f ~ .  

3. STABILITY CONSIDERATIONS 

Standard mathematical methods to stabilize the model have been tried 
since the conventional LBE scheme operates exactly at the Courant-  
Friedrichs stability criterion. In LBE models, time evolves in two steps: the 
collision process, in which the distributions at a site are relaxed toward 
equilibrium, and the advection process, in which the distributions are 
moved to their new lattice sites. The simplest advection scheme is to trans- 
late distributions by an integer displacement according to the speed of the 
distribution. However, since the accuracy of the collision process is only 
O(ft2), one may instead use an advection process that maintains O(ft  2) 
accuracy yet improves total stability. For example, the Lax-Wendroff 
scheme 1~7~ discretizes the advection equation as 

C , 
f~(r, t + fit) = f'~(r, t) - ~- (f~(r + r%, t) - f'=(r - r%, t)) 

C z 
+ ~ - ( f ' ~ ( r  + r%, t ) +  f ' ~ ( r - r % ,  t ) -  2f'~(r, t)) (8) 

where C - - f t l r  is the Courant number. Note that a redistribution among 
neighboring sites is called for that involves distributions displaced upwind, 

822/87/5-6-10 
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displaced downwind, and left in place. The appearance of 6t in the expres- 
sions for the transport coefficients guarantees that the collision process will 
be appropriately adjusted to suit the reduced simulation time step. In general, 
one finds that the use of Lax-Wendroff scheme significantly improves 
stability with some loss of accuracyJ j~ Using a predictor-corrector for- 
mulation for the combined advection and collision processes yielded no 
significant improvement in the model's stability or accuracy. 

4. S I M U L A T I O N  RESULTS 

The 27-velocity thermal LBE model bias been used to simulate com- 
pressible Rayleigh-B6nard convectionJ ,8~ The results are compared against 
those obtained from a 21-speed LBE model and an explicit MacCormack 
finite-difference (FD) solver.~ 19~ These simulations have been done primarily 
in two dimensions to reduce the CPU time required and to allow the use 
of larger grids having finer spatial resolution. However, full three-dimen- 
sional simulations were performed to verify the numerical stability of the 
model with respect to wave vectors lying off the x-y plane. 

Lattice Boltzmann models often employ simplified boundary conditions 
(e.g., no-slip boundary conditions implemented by means of backreflecting 
boundary sites). While simple to implement, these schemes generate 
incorrect boundary layers c~3"H~ which have been addressed by more 
elaborate boundary rules/~5. ~6~ Thermal LBE models introduce additional 
difficulty through the need to provide isothermal boundaries. This require- 
ment may be satisfied by using techniques employed in standard finite- 
difference methods, namely extrapolation of fluid-dynamic quantities from 
the interior of the fluid onto the boundary of the computational domain. We 
used quadratic extrapolation for conserved quantities and linear extrapola- 
tion for nonequilibrium modes; see (ref. 10) for a detailed description. 

Table I. Peak Fluid Veloc i ty  of Convective Flows 
Simulated by the LBE Model for Three Different 

Temperature Ratios and Two Different Grid Sizes" 

T . / T  c d =  I00 200 

1,2 0.04237 (0.04243) 0.04231 
1.4 0.07670 (0.07741) 0.07662 
1.5 0.09126 (0.09244) 0.09115 

"The  values in parentheses are those produced by the Mac- 
Cormack finite-difference code. Fluid velocities are normalized 
by tile local speed of sound. 
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Table II. Normalized RMS Deviation for Density, 
Temperature, and Velocity Between LBE (d= 100) and 

MacCormack Simulation Results for Different 
Temperature Ratios 

T u / T  c Density Temperature Velocity 

1.2 0.00105 0.00115 0.00120 
1.4 0.00543 0.00555 0.00683 
1.5 0.00860 0.00809 0.01103 

The simulation models flow in a two-dimensional rectangular region 
of width L and height d bounded by rigid walls at the top and bottom and 
with periodic boundary conditions employed at the sides of the system. No- 
slip, isothermal boundary conditions are enforced at the top and bottom 
walls, which are maintained at temperatures T~, and T , ,  respectively, with 
T o <  Tu. A gravitational force exerts a downward acceleration g on the 
fluid. An (x, -) coordinate system is adopted with x increasing to the right 
and z increasing downward. The locations of the top and bottom walls are 
taken to be z = zo and z = zo + d, respectively, where z o = d T c / ( T  u -  To). 
The fluid is set up with initial temperature, density, and pressure 

T~,(:) = To.z/-,,, Pc,(z) = Pc(Z~-,,) '', Po(Z) = Pc(Z/Zo) ''+ i (9) 

where Pc. and Pc' are the density and pressure at the top wall and n is the 
polytropic index (i.e., p oc T"). The fluid velocity is initially zero plus a small 
perturbation which may be random or of the form u-=u_-osin(2~tx/L) 
s in[~t(z -zo) /d] .  The latter form leads to faster startup of the convective 
rolls, but selects a particular horizontal wave number for development of the 
convective instability. 

The flow is characterized by six dimensionless parameters: the fluid's 
ratio of specific heats ),= C~,/C,. and Prandtl number, the aspect ratio 

Table III. Normalized RMS Deviation for Density, 
Temperature, and Velocity Between LBE (d=200) and 

MacCormack Simulation Results for Different 
Temperature Ratios 

T u / T  c Density Temperature Velocity 

1.2 0.00152 0.00151 0.00152 
1.4 0.00679 0.00662 0.00889 
1.5 0.01001 0.00912 0.01316 



1118 McNamara et  al. 

Table IV. Peak Normalized Fluid Velocity as a Function 
of Rayleigh Number and Lax-Wendroff  Time Step for 

d = 5 0  and TH/Tc = 1.5" 

Ra 6t = 0.95 0.90 0.80 MacCormack 

8,000 0.0930 0.0939 0.0946 0.0924 
16,000 Unstable 0.1529 0.1539 0.1518 

" Runs listed as unstable diverged due to numerical instability. The 
last column gives peak normalized fluid velocity obtained from the 
MacCormack solver on a 150 • 100 grid. 

A =L/d, the temperature ratio TH/Tc, the polytropic index n, and the 
Rayleigh number  

Ra gd4 ( T H - T c g ' )  
(10) 

Tc.vc.xc \ c j  

where v c. and Zc are the values of the transport  coefficients measured at 
density pc.. The transport  coefficients are taken to be independent of T and 
to scale inversely with p. The simulations described here fix ), = 5/3 (since 
the LBE gas is ideal and monatomic),  Pr  = 2/3, A = 1.5, and n = 0. The last 
constraint implies the relation g = k( Tr-z- To)lind, so that gravity balances 
the temperature difference and the initial data (uniform density, linear 
temperature gradient) form an unstable equilibrium solution. 

After an initial transient, the system settles into a state of steady con- 
vective flow. For  Ra = 8000, the peak fluid velocities achieved in runs with 
three different temperature ratios are shown in Table I. These velocities 
have been normalized by the local speed of sound (which varies with T). 
The root mean square deviations between the LBE and the MacCormack  
FD results are given in Tables II  and III. The RMS density deviation is 

Table V. RMS Error in Normalized Fluid Velocity 
Between the LBE Lax-Wendroff  Runs (75x50  grid) and 

the MacCormack Simulations (150x 100 Grid) for 
TH/Tc = 1,5" 

Ra 3t = 0.95 0.90 0.80 

8,000 0.0073 0.0139 0.0200 
16,000 Unstable 0.0119 0.0209 

" Runs listed as unstable diverged due to numerical instability. 
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c a l c u l a t e d  as ( (p LBE - P Fo) 2 ) I/2//( (p  FD --  P0) 2 ) 1/2, whe re  the  angle b r a c k e t s  
indicate averaging over all interior lattice sites; the temperature and 
velocity deviations are calculated similarly. For both grid sizes the RMS 
error varies with the peak fluid velocity as u ~, where a ~ 2.5 for the density 
and temperature deviations and a ~ 3 for the velocity deviations. In con- 
trast, for the 21-speed LBE model, all three deviations varied as u I due to 
the errors introduced by employing a reduced velocity set. In the 27-velocity 
set not only is the absolute error reduced by an order of magnitude, but 
it seems to be dominated by higher order terms in the Chapman-Enskog 
expansion beyond the validity of Navier-Stokes hydrodynamics as 
indicated by the observation that the cubic velocity deviation persists and 
gets even larger for the finer grid size. Thus, in comparing absolute error 
in the 21- and 27-velocity models, the RMS density and temperature devia- 
tions are smaller by a factor of 17 and the RMS velocity deviations by a 
factor of 7 in the low-speed case (T,/Tc= 1.2). The 27-speed model was 
found to be numerically unstable even at moderate Rayleigh number (e.g., 
Ra~  10, 000 for d =  50) with a stability range smaller than that of the 
21-speed model. The stability can be improved using the Lax-Wendroff 
scheme, but at the expense of accuracy (see Tables IV and V). 

5. C O N C L U S I O N S  

This paper describes a three-dimensional multispeed thermal LBE 
model which produces fully correct hydrodynamic behavior at the 
Navier-Stokes level of the Chapman-Enskog expansion. Good agreement 
(less than about 1% error) is found when comparing this model with a 
conventional explicit finite-difference Navier-Stokes solver in modeling 
compressible Rayleigh-B6nard convective flows. However, the numerical 
stability leaves much to be desired. We ascribe the earlier, quite good 
stability of the momentum-only calculation to the use of a very physical 
particle-like collision operator, while in the present model, which includes 
energy, that particle-like aspect is lost in the requirement of satisfying 
moment conditions. Since standard numerical methods to stabilize the 
solution showed only moderate success, it seems that the only option for 
stabilization is to still further increase the number of velocities, since we 
know that in the limit of having a very large set of velocities leads to the 
Maxwell-Boltzmann distribution that has stability. The problem is that 
one does not know off hand by what criterion to determine the additional 
velocities and besides that increasing the number of velocities beyond the 
already rather large number of 27 velocities defeats the whole purpose of 
the enterprise to have a simple model, with only a few degrees of freedom, 
of hydrodynamic behavior. The large number of particle velocities required 
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for the LBE model also results in greatly increased computer memory 
requirements relative to a conventional solver, roughly a factor of 5 (27 
velocities vs. 5 conserved densities for the conventional solver). The LBE 
method also ran somewhat slower than the finite-difference method, with 
running times less than a factor of 2 greater than the MacCormack scheme 
on comparable size grids. 

Considering that the LBE model took comparable computer time to 
the explicit finite-difference MacCormack calculation, that the boundary 
conditions are treated analogously, that memory requirements are 
significantly greater, and that numerical stability is significantly poorer, we 
find no potential advantage in using an LBE model over a conventional 
Navier-Stokes solver for thermal systems. 
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